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ABSTRACT 
When modeling passive data to infer individual mental wellbeing, 
a common source of ground truth is self-reports. But these tend to 
represent the psychological facet of mental states, which might not 
align with the physiological facet of that state. Our paper demon-
strates that when what people “feel” difers from what people “say 
they feel”, we witness a semantic gap that limits predictions. We 
show that predicting mental wellbeing with passive data (ofine 
sensors or online social media) is related to how the ground-truth 
is measured (objective arousal or self-report). Features with psycho-
social signals (e.g., language) were better at predicting self-reported 
anxiety and stress. Conversely, features with behavioral signals 
(e.g., sleep), were better at predicting stressful arousal. Regardless 
of the source of ground truth, integrating both signals boosted pre-
diction. To reduce the semantic gap, we provide recommendations 
to evaluate ground truth measures and adopt parsimonious sensing. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in ubiq-
uitous and mobile computing; • Applied computing → Law, 
social and behavioral sciences; Psychology. 
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1 INTRODUCTION 
As technology use permeates through society, researchers have 
abundant opportunities to infer an individual’s mental wellbeing 
in everyday settings by modeling data from diferent passive sens-
ing sources like smartphones, wearables, and social media [27]. 
A standard assumption across such studies is that ground truth 
labels are unquestionable [20, 55]. However, an individual’s mental 
state is complex and self-reported methods to defne ground truth 
only represent the respondent’s interpretation [112]. Even for the 
same mental state, individuals can respond to surveys diferently 
because of self-presentation bias [58] and non-response bias [48]. 
These nuances are loaded into the ground truth labels but are often 
ignored by passively sensed data. This lack of information, or ab-
straction of it, leads to a mismatch between model estimates and 
the actual mental state of the individual [99]. Some areas of com-
puting refer to the abstraction between a computational model and 
the variable of interest as the “Semantic Gap” [16]. An individual’s 
mental state can “appear” diferent despite referring to the same 
semantic concept [99]. This gap is stark when the signals gleaned 
from computational data do not coincide with the factors afecting 
the ground truth. This paper’s position is that, for real-world longi-
tudinal studies of mental-wellbeing, the semantic gap limits certain 
passive sensing models due to the nature of ground truth measures. 

Consider a dominant form of mental wellbeing ground truth, 
self-reports. This method has been widely used in social and ubiq-
uitous computing for predicting anxiety or stress [4, 23, 24, 75, 93]. 
While self-reports can approximate the psychometric component 
of stress (e.g., nervousness or apprehension), they do not refect 
the physiological one (e.g., increase heart rate) [111]. During the 
self-report, describing the exact momentary efects of a stressor 
is more likely to align the psychometric and physiological com-
ponents. However, a survey response may be infuenced by the 
retrospective psychological efect at the time of reporting [51, 110]. 
Importantly, self-reports are sensitive to psycho-social factors such 
as recall bias, impression bias, and self-censorship [48, 58, 97]. An 
individual’s self-report can be disconnected from their behavior 
because they are uncomfortable disclosing the severity of their 
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state [48, 112]. These psychosocial infuences on self-reports are 
invisible to typical approaches of passive sensing, which focus on 
individual physical behaviors, such as activity duration, mobility, 
and device usage. Despite the same bodily response to watching an 
intense horror movie compared to being reprimanded by a supervi-
sor; a survey response could report diferent stress severity for each 
experience. On the other hand, physiological measures of ground 
truth might indicate the same severity, but ignore the negativity as-
sociated with the experience. Therefore, predictive models trained 
on an individual’s activity data can be limited simply because of a 
mismatch between the choice of feature representations and the 
type of ground truth measurement. We believe this represents a 
semantic gap. We aim to empirically demonstrate that this gap 
exists in our domain and prescribe approaches to mitigate it. 

Other computing areas plagued by the semantic gap teach us that 
this gap is narrower when the low-level representations (e.g., pas-
sively sensed features) and high-level representations (e.g., ground 
truth values) for the same concept are semantically analogous [99]. 
This fundamental informs our inquiry. For example, posts on online 
social media can encapsulate the same psycho-social infuences 
that interfere with self-reports, in terms of self-disclosure [37] 
and censorship [25]. By contrast, physical behaviors from ofine 
sensing are semantically closer to physiological aspects, such as 
arousal [76, 83, 86]. Yet, it is challenging to observe the semantic 
gap in practical deployments because most eforts to predict mental 
wellbeing, focus on limited sensor streams and a limited set of cor-
responding ground truth measures. To mitigate this, we investigate 
the gap by leveraging a unique dataset that includes a variety of 
ground truth measures for mental wellbeing states and a variety of 
passively sensed data. 

We employ the triangulation method [36] to investigate if this 
gap actually exists by demonstrating the predictive efcacy of dif-
ferent passive sensing approaches on diferent measures of ground 
truth for mental wellbeing. One relies on the ofine physical activi-
ties sensed from smartphones, wearables, and Bluetooth. The other 
relies on the online language extracted from posts on social media. 
With these we build models to predict two diferent interpretations 
of an individual’s mental state — the frst is self-reports of state anx-
iety and stress, and the second is a measure of physiological arousal 
through a wrist-worn sensor. Our paper addresses two questions: 

RQ1. Compared to behavioral signals, do social signals have a 
smaller semantic gap with psychological interpretations of 
wellbeing? 

RQ2. Compared to social signals, do behavioral signals have a 
smaller semantic gap with physiological interpretations of 
wellbeing? 

Primarily, this paper presents a case that characterizes the seman-
tic gap in passive sensing for predictive wellbeing and demonstrates 
an approach to reduce it. By highlighting this semantic gap, our aim 
is neither to identify the most credible instrument of ground truth 
nor is it to deplore particular sensor streams. Instead, we intend 
to clarify why passive sensing models of mental wellbeing appear 
to work or fail. Acknowledging the semantic gap in our domain 
leads to several key implications. Overall, we provide empirical 
evidence to support how diferent passive sensing modalities are 
naturally coupled to diferent interpretations of ground truth. Next, 

we encourage researchers to consciously understand the nature 
of ground truth labels and what factors infuence that measure. 
And fnally, in cases of limited sensing afordances for feld study 
deployments, our fndings motivate a more theoretical approach to 
sensor and modality selection for efcacious predictive studies. 

2 BACKGROUND & RELATED WORK 
As a background for the research presented in this paper, we note 
that the existing literature demonstrates multiple examples of infer-
ring mental states with personal devices that capture behavior, such 
as smartphones and wearables [23, 75, 93], as well as with language 
used by people online [4, 24]. However, many such studies rely on 
self-reports that do not adequately represent the multidimensional 
nature of mental-wellbeing constructs [111]. This abstraction be-
tween the ground truth and the actual mental state can render a 
semantic gap, which limits the performance of passive sensing. In 
the subsections below, we discuss relevant literature on semantic 
gap, representations of ground truth, and how social and behavior 
signals have been used for measurement of mental wellbeing. We 
use this background to propose our hypotheses. 

2.1 Semantic Gap in Computing Problems 
A “semantic gap” refers to the loss of information when machines 
try to formalize a concept that humans could interpret naturally [16, 
50, 99]. This idea stems from classical frameworks of natural lan-
guage processing, human cognition, and the challenge of translating 
real-world expressions, personal experiences, and cultural context 
into specifc computational models [16]. The most notable explo-
rations of semantic gap are in the image-retrieval and computer 
vision communities [50, 99]. Consider a model that infers the mood 
of an individual by analyzing the image of their face. When the faces 
are present in defned angles and backgrounds (e.g., front-facing, 
white background, fxed lighting), the model can interpret the scene 
in terms of certain formal parameters [99]. In contrast, when the 
same expression is captured in an image of a natural context (e.g., 
weather, crowds) the model takes a broader, more subjective, and 
error-prone interpretation [99]. In cases like the latter, the semantic 
gap is particularly stark. It requires a computer to interpret an object 
in the real world based on human labeled ground truth. Yet, human 
labels can provide rich high-level explanations of a situation that 
computers struggle to glean from low-level parametrized data [50]. 
Human interpretation of scenes often considers ecological factors, 
novel variations, and simply common sense. However, a computer 
refers to the same semantic construct with feature vectors (e.g., 
regions, frequency, and segments) and tries to relate these opera-
tors [50]. In this paper we broaden the defnition of semantic gap 
provided by Smeulders et al. and adapt it: 

Semantic Gap. The lack of coincidence between the 
information that one can extract from the data and the 
interpretation that the same data have for a user in a 
given situation. 

Research in passive sensing also attempts to infer mental state 
based on data-driven features [10, 17, 19, 30, 36, 42, 65, 71, 74, 88, 91]. 
Oftentimes, these investigations take place in natural settings [18], 
where researchers use self-reports for ground truth. However, in 
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situ self-reports are high-level human evaluations and are, there-
fore, sensitive to multiple social efects that are invisible to passive 
sensors [20]. This drives us to study if the semantic gap exists for 
passively sensing mental states. We believe describing individual 
mental wellbeing with passive sensing is analogous to using com-
puter vision to describe a visual scene. While computational models 
are expected to explain the target construct, they are insufcient in 
explaining the high-level semantics [50]. This paper is motivated 
to investigate the loss of information between high-level in-
terpretations of mental wellbeing — such as self-reports — 
and the low-level computational interpretations of behavior 
— such as inferences from passive sensing. 

2.2 Representations of Ground Truth for 
Mental Wellbeing 

Since mental wellbeing is a complex concept, human interpretations 
of it tend to be high-level representations. Even when collected in 
situ [20], the label that is collected is only an evaluative judgment 
of the participant’s mental state [112], which tends to describe the 
psychological aspect of it. Weiss describes, “true afective states, 
moods, and emotions have causes and consequences distinguishable 
from the causes and consequences of evaluative judgments” [112, 
p. 176]. By contrast, mental states also have physiological artifacts, 
which might not be refected in self-reports [112]. 

In social and ubiquitous computing, feld studies to infer mental 
wellbeing rely on self-reports [55] as ground truth. These reports are 
sensitive to factors that infuence reporting and self-perception. For 
instance, Chan et al. qualitatively studied participant experiences 
with ecological momentary assessment (EMA) tools for wellbeing 
and found external factors (e.g., commuting, social situations) to 
infuence the quality of self-reports [20]. Even traditional survey 
literature states that factors like social desirability can impact par-
ticipant responses [58]. This can lead to participants over-reporting 
certain types of experiences and under-reporting others. In some 
cases, social norms are stronger indicators of participant reports 
than personal attitudes [54]. Moreover, perceptions of wellbeing are 
often blurred by the subjectivity of memory. For example, partici-
pants often overestimate their sleep time in comparison to observed 
measurements [97]. Some self-reports describe exceptional events, 
some describe every episode, while some summarize multiple in-
cidents [113]. These factors create a misalignment between what 
participants report, even though participant activities convey the 
same mental state. 

Now, let us consider the fact that wellbeing has physiological 
aspects [112], which are not explicitly captured by self-reports. 
Compare a case where a participant is running on a treadmill and 
another where they are chased by a bear. Despite both cases having 
many similar physiological efects, such as elevated heart rate, a 
self-reported evaluation of stress is likely to be lower in the tread-
mill scenario. According to Russell’s Circumplex Model of Afect, 
mental states such as stress can be described on the basis of arousal 
(or alertness) and valence (or pleasure) [85]. However, self-reports 
are known to be imprecise in describing the arousal aspect [51] as 
it is momentary and very sensitive to the stress event [110]. In an 
experimental study of public speaking, Hellhammer and Schubert 

found that self-reports of stress were only correlated with the phys-
iological state during the stressful event but not before or after it. A 
related study found that similar stressors afect the heart rate of par-
ticipants similarly, but their self-report of stress is highly correlated 
to higher trait anxiety [110]. In fact, prior work has encouraged 
incorporating physiological changes in an individual as a diferent 
type of gold standard for ground truth [52]. 

This does not imply that only one representation of wellbeing is 
“true”, nor does it imply that these representations are mutually ex-
clusive. What these works indicate is that the state of a participant’s 
wellbeing can be interpreted diferently based on how it is measured. 
And these diferent abstractions can lead to a loss of information 
in computational models because each representation is afected 
by diferent kinds of signals. Given these distinctions, our study 
investigates the related mental wellbeing constructs of anxiety and 
stress. These constructs are selected because they have diferent 
abstractions [111], one that is psychometric and the other that is 
physiological. Moreover, diferent instruments can measure these 
diferent abstractions, i.e., self-reports are skewed towards psycho-
logical interpretations while arousal measurements are skewed 
towards the physiological interpretations. As a result, the frst ques-
tion of the paper (RQ1) is focused on self-report assessments while 
the second relates to the arousal measurements (RQ2). 

2.3 Social Signals and Self-Reported Wellbeing 
Participant self-reports are sensitive to many factors [20, 54, 58, 97], 
which might not actually afect the participant’s mental state, but 
only their interpretation or their report [112]. A majority of physical 
sensing work models behaviors on self-reported measures [10, 17, 
19, 42, 71, 104]. However, prior work recognizes that models need 
to consider features that capture the variability in the representa-
tion of the target construct [118]. In mental wellbeing self-reports, 
this variability (e.g., self-presentation, social norms, and memory 
specifcity) is not captured by physical behaviors, and, therefore, 
strips such modeling approaches of their true efcacy. By contrast, 
studies harnessing posts on social media to predict individual well-
being [30, 36, 65, 88, 91] have used features that are semantically 
similar to self-reports. 

Despite the popularity of self-reports as ground-truth, a com-
mon limitation that is invariably unchecked is the self-presentation 
bias [1, 58]. This often leads to “deliberate impression management” 
that is geared towards projecting an appearance based on personal 
motives. What participants are willing to disclose often gets con-
founded with how they would like to be perceived [53]. Similarly, 
users of social media are constantly juggling with self-presentation 
issues depending on their audience [98]. For instance, Ernala et al. 
found that users vary the depth of their mental wellbeing disclosure 
based on audience engagement. Relatedly, a common issue with 
ground truth is response bias (or non-response bias) [48]. Based on 
individual diferences, certain participants can have a reluctance to 
respond to certain survey items. For instance, in surveys around al-
cohol, the non-response of heavy alcohol consumers’ is infuenced 
by fear of embarassment [59]. A corresponding phenomenon on so-
cial media is self-censorship, which describes online expressiveness 
as a function of the social norms of the perceived audience [25]. 
Das and Kramer have discussed how gender, age, and the diversity 
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of the audience can afect the content posted online. This literature 
leads us to believe that using passively sensed data from social 
media can capture some of the ecological factors that infuence self-
reports. To address our frst research question, RQ1: “Compared to 
behavioral signals, do social signals have a smaller semantic gap with 
psychological interpretations of wellbeing?”, our work investigates 
two specifc hypotheses: 

H1a. Features extracted from social media posts are more pre-
dictive of self-reported anxiety than features extracted from 
sensors of ofine physical activity 

H1b. Features extracted from social media posts are more pre-
dictive of self-reported stress than features extracted from 
sensors of ofine physical activity 

Physical activity data harnessed from ofine devices observe a 
continuous stream of data that is neither segmented nor self-vetted 
by social efects. Therefore, we speculate that the semantic gap 
in using the latter to predict self-reported wellbeing will yield a 
larger semantic gap. Nevertheless, physical activity data can witness 
some of the social efects discussed earlier as self-presentation can 
manifest in the ofine too [46]. However, since social media posts 
are explicitly laced with such factors, we expect it to approximate 
self-reports more efectively. 

2.4 Behavioral Signals and Physiological 
Measurement of Wellbeing 

RQ1 challenges the efcacy of passively sensing physical activity 
to predict psychological wellbeing. Meanwhile, it is also important 
to comprehend which aspects of wellbeing do physical activity 
features actually explain. We know that mental states like stress 
lead to many physiological changes in an individual, which are 
not captured by self-reports [51]. Therefore, to complement the 
previous question, we question if the semantic gap between physical 
activities and mental wellbeing reduces when the ground truth is 
measured via physiological assessments. 

When facing a fght or fight situation, the body prepares for dy-
namic actions to cope with it. This manifests as a stress response in 
a variety of discernible physiological reactions, e.g. the heart beats 
faster, with more regularity, and therefore vigilance increases [41]. 
Today, commodity wearable devices can track the physiological 
correlates of stress and related constructs, such as heart rate (HR), 
and these constructs in the long term are important for measuring 
health [8, 92]. Thus, heart rate monitors and other mobile devices 
can record objective measures of stress such as increased heart 
rate and decreased heart rate variability [51, 73]. Moreover, many 
ubiquitous devices can capture behavioral signatures of the user 
required to infer such markers. Smartphones and other mobile tech-
nologies are capable of rendering features to describe sleep, step 
count (movement), and device usage. All of which have previously 
been harnessed to indicate anxiety and stress [11, 34, 86]. 

Unlike self-reported measures of ground truth, which are sen-
sitive to social efects, physiological measures (e.g., variation in 
arousal or cortisol) are relatively robust to such factors. Conversely, 
while individuals are aware of increased physiological changes they 
may not always report it as stress. Despite similar physiological 
efects, self-reports of stress reports are often related to the negative 
emotion [101]. In this regard, the physical activity of the individual 

remains consistent with the physiological experience of stress. For 
instance, exercise is a positive way to use available energy released 
by physiological stress responses and is therefore associated with 
decreased stress and better wellness [6, 83]. Similarly, reduced sleep 
is known to refect increased stress because heightened arousal due 
to stressors augments alertness and thus disrupt sleep [86]. Even 
seemingly unrelated behaviors of an individual like phone usage are 
related to stress [76] because they can represent the sleep health of 
individuals [62]. These works lead us to our next research question, 
RQ2: “Compared to social signals, do behavioral signals have a smaller 
semantic gap with physiological interpretations of wellbeing?”, which 
we investigate with a specifc hypothesis: 

H2. Features extracted from physical activity sensors are more 
predictive of high arousal duration than features extracted 
than social media posts 

Since physical activity sensors tend to be an unobtrusive, unfl-
tered, and longitudinal characterization of an individual’s behavior 
we expect them to approximate physiological changes in the indi-
vidual [78, 82]. Even though features extracted from social media 
content can be used to infer physiological markers of wellbeing such 
as heart rate and arousal [90], such information is limited to what 
people say, not what people do, and therefore poorly approximate 
physiological changes. 

H2 can be viewed as a corollary of H1. While H1a and H1b at-
tempt to expose evidence that high-level factors infuencing mental 
wellbeing self-reports can exacerbate the semantic gap, H2 aims to 
fnd evidence that other interpretations of mental wellbeing can ex-
hibit a narrower gap. We would also like to reemphasize that these 
hypotheses are not intended to assert that one approach is inca-
pable of measuring wellbeing. On the contrary, these are motivated 
to disentangle how diferent interpretations of, or methods of mea-
suring, the ground truth are biased towards diferent approaches 
based on the underlying factors certain modalities capture [118]. 

3 STUDY AND DATA 

3.1 The Tesserae Project 
This work relied on data collected from a large multimodal sens-
ing efort known as the Tesserae Project [69, 87]. This project 
investigated worker performance and wellbeing in-the-wild by 
using passively sensed data acquired from of-the-shelf technolo-
gies [26, 72, 90], furthering prior work in the community that lever-
age multimodal sensing to determine individual mental health, 
wellbeing and related outcomes [67, 74, 81, 88, 108]. Such a dataset 
is particularly appropriate for our research questions because it con-
tains diferent interpretations of the ground truth (self-reported and 
physiological) as well as multiple sources of passive data (physical 
activity and social media posts). 

The dataset contains a set of 757 information workers (involved 
in felds like engineering, consultancy, and management) recruited 
from various feld sites in the United States in a rolling enrollment 
from January 2018 through July 2019. This study was approved by 
the Institutional Review Board (IRB) at the researchers’ institutions 
and the data was de-identifed and stored in secured databases with 
regulated access privileges. On enrollment, participants completed 
an initial assessment to record individual diferences, such as demo-
graphics. Subsequently, for purposes of passive sensing, a phone 
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Figure 1: Summary of participants. The solid red line in-
dicates the median and the dotted green lines indicate the 
inter-quartile range. 

application was installed in participants’ smartphones [108] and 
they were provided a wearable device (Garmin Vivosmart) along 
with Bluetooth beacons (Gimbal) [69]. These devices captured of-
fine behaviors such as phone usage, locations, steps, sleep, and 
presence at home. Moreover, a subset of participants explicitly 
consented to the study of their historical and prospective social 
media data [87]. These diferent data sources represented the difer-
ent comparative models analyzed in this paper. At the same time, 
the phone agent facilitated Ecological Momentary Assessments 
(EMAs) to capture daily variations in mental wellbeing states. The 
self-reports for anxiety and stress form the basis of the perceptual 
representation of ground truth (RQ1). Similarly, the wearable pro-
vided daily estimates of the duration an individual’s physiology 
was in a state of high arousal (RQ2) [8]. 
This paper only considered those 317 participants that consented to 
data collection of ofine behaviors as well as the social media collec-
tion. 129 participants reported they were female and 188 reported they 
were male (Figure 1b). Figure 1a shows the age distribution and the 
average age was about 35 years (stdev. = 9.27). Figure 1c depicts the 
study period for the participants. On average, participants provided 
self-reports for 33 days (stdev. = 18.44) 

3.2 Ground Truth 
Our central argument is that diferent ground truth for wellbeing are 
associated with unique ecological factors, which are diferentially 
represented in passive sensing modalities. In particular, this work 
was scoped to predict anxiety and stress because these wellbeing 
constructs can be represented both psychologically and physiologi-
cally. While the former was captured with self-reports, the latter 
was measured through precise changes in bodily responses. 

3.2.1 Self-Reports. Self-reports are considered a gold-standard 
method to retrieve ground truth labels in many studies that use 
passive sensing to infer individual wellbeing [10, 17, 19, 30, 42, 
65, 71, 74, 88, 91]. However, as described in Section 2.2 and 2.3, a 
self-report is merely an evaluation of the individual’s state [112] 
and these evaluations face interference from multiple factors that 
do not necessarily impact the actual state of the individual’s well-
being [20, 54, 58, 97]. Notably, values recorded in self-reports are 
subject to self-presentation bias [1, 58] and non-response bias [48]. 
For RQ1, we studied if certain passive sensing modalities were 
more predictive of self-reports because they inherently refect an 
individual’s attitude towards disclosure and censorship. 

(c) High-Arousal 
(a) Anxiety (b) Stress Duration 

Figure 2: Distribution of Ground Truth. The solid red line 
shows the median and the dotted green lines show the inter-
quartile range. 

Anxiety. The emotional state that represents an exaggerated un-
pleasantness, negativity, or fear of future events is known as anxi-
ety [63]. While anxiety can manifest as a trait, refecting an individ-
ual’s predispositions to react to certain stimuli, it also occurs as a 
transitory feeling, or a state [63, 102]. This paper is concerned with 
the state aspect of anxiety. In fact, state anxiety can be characterized 
by both conscious perceptions (of apprehension or nervousness) 
and physiological arousal [102]. These aspects position anxiety as a 
viable construct for this study because it can vary in interpretation 
based on the measurement method. In this dataset, participants 
responded to a daily single item instrument developed by Davey 
et al. to record the changes in anxiety [28]. Figure 2a shows the 
distribution of self-reported state anxiety. On a scale of 1-5, the 
mean response was 1.68 (stdev. = 0.81). 
Stress. The way an entity responds to adverse ecological demands 
is known as stress [95]. The environmental factors that elicit stress 
are known as “stressors”, and these contain both psychological 
or physiological components [56]. While humans tend to witness 
stressors that are some amalgam of both components, the efects of 
each component have diferential outcomes in terms of response 
behaviors and duration [56]. Therefore, stress is another wellbeing 
construct that can be interpreted diferently based on how it is 
measured. Particularly, self-reported measures of stress are more 
indicative of perceived stress or psychological stress [61]. Partici-
pants responded to a daily single-item omnibus question to explore 
this phenomenon, “Overall, how would you rate your current level 
of stress?”. This instrument was internally validated within the 
program metrics of the overall project by robustly correlating it 
with other measures, to establish concurrent validity [69]. Figure 2b 
shows the distribution of self-reported stress. On a scale of 1-5, the 
mean response was 1.97 (stdev. = 0.90). 

3.2.2 Physiological Measurement. Although self-reported meth-
ods to acquire ground truth have dominated studies of passive 
sensing, wellbeing can be measured in-situ through physiological 
metrics [52]. For instance, both anxiety and stress are tied to phys-
iological responses. These physiological responses may intersect 
with psychological ones, but can be dislocated from them as well 
(Section 2.4. Accordingly, in RQ2, this paper studies if particular 
passive sensing modalities are more efective predictors of physio-
logical measures, which are robust to social variances but tightly 
coupled with behavioral changes in the individual. 
High-Arousal Duration Both state anxiety [102] and stress [56] 
are linked to arousal. When an individual anticipates or is sub-
jected to a stressor they experience physiological changes such as 
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Table 1: Activity features derived from ofline sensors; * : in-
cludes features aggregated by epochs, i.e, 24 hours, 12am -
6am, 6am - 12pm, 12pm - 6pm and 6pm - 12am 

Category Features Stream 

Activity Label Still duration*, walking duration*, run- Smartphone 
ning duration*, unique activity count 

Movement Steps count, steps goal, floors climbed, Wearable 
floors goal, distance covered 

Mobility Unique location count, total location Smartphone 
count, inter-location distance 

Sleep Sleep duration, sleep debt, time of Smartphone, 
wakeup, time of bedtime Wearable 

Screen Unlock Duration*, Unlock Count* Smartphone 
Presence Work session duration, desk session BT Beacons 

duration, desk session count, percent-
age time at work, percentage time at 
desk, 30 minute break count 

heightened heart rate (HR) and changes to their heart rate variabil-
ity (HRV) [51, 73]. Such reactions are linked to a “fght-or-fight” 
response through the Sympathetic Nervous System (SNS). The par-
ticipants in our dataset were equipped with wearables that could 
measure the HR and HRV of the individual. Based on this, we ob-
tained Garmin’s HealthAPI ’s [8] estimates of the daily duration for 
which the user was in a high arousal state [29]. As per Firstbeat An-
alytics (the framework powering the API) a simultaneous increase 
in an individual’s HR along with reduced HRV triggers the SNS to 
activate their body into a stress state [103]. Prior work has shown 
that Garmin’s HR-based inference of maximal oxygen update — a 
key physiological indicator of stressful arousal, known as VO2 max 
— was highly correlated (r = 0.84) with measurements from clin-
ical instruments [57]. The Garmin HealthAPI leverages Firstbeat 
Analytics, which reported that even in free-living conditions, using 
HR to infer stress demonstrated low error (approximately 5% Mean 
Absolute Percentage Error) in estimating VO2 max [114]. Garmin 
wrist-worn devices have been used by researchers in the domain to 
provide physiological ground truth for modeling passively sensed 
behavioral signals [26, 39, 90]. In this study, we only considered the 
high arousal duration for days the participants’ wearable provided 
more than 18 hours of data, in order to get a representative sam-
ple [69]. Figure 2c shows the distribution of the daily high-arousal 
duration. On average, for a given day the participant experiences a 
high-arousal state for 4193 seconds or 1.16 hours. 

3.3 Passively Sensed Data 
Researchers have used several unobtrusive methods to retrieve 
low-level digital traces or “markers” that describe individuals and 
use these features to make inferences for mental wellbeing. To il-
lustrate the semantic gap, we focused on two diferent sources of 
passive sensing, ofine sensors that capture behavioral signals and 
language on social media that refects social signals 2.4). By using 
these sources we built comparative models to predict diferent in-
terpretations of the ground truth (self-report and arousal duration) 
and tested our hypotheses to address our research questions. 

Table 2: Language features derived from social media 

Category Features 

LIWC Afective atributes: anger, anxiety, negative and posi-
tive afect, sadness, swear; Cognitive atributes: causa-
tion, inhibition, cognitive mechanics, discrepancies, 
negation, tentativeness; Perception: feel, hear, insight, 
see; Interpersonal focus: first person singular, second 
person plural, third person plural, indefinite pronoun; 
Temporal references: future tense, past tense, present 
tense; Lexical density and awareness: adverbs, verbs, 
article, exclusive, inclusive, preposition, quantifier; 
Biological concerns: bio, body, death, health, sexual; 
Personal concerns: achievement, home, money, reli-
gion; Social concerns: family, friends, humans, social 

Sentiment Positive score, negative score, neutral score 
N-Grams Top 500 

3.3.1 Physical Activity. To collect continuous physical activity data, 
participants had of three diferent sensor streams, (i) smartphone, 
(ii) wearable, and (iii) Bluetooth beacons, as introduced above. The 
application installed in the smartphone [108] measured screen ac-
tivity (or device use), tracked GPS location, and provided activity 
labels [7]. The wrist-worn wearable estimated activity duration, 
step counts and was combined with the screen usage to yield sleep 
features. Lastly, the Bluetooth beacons were placed on the front 
door of the participant’s residence and on their work desk. These 
beacons were observed by the individual’s phone agent [9] to infer 
the time they spent on their desk, when they came into work, and 
how frequently they were away from the desk [26]. Table 1 summa-
rizes the features derived from this set of sensors. These features 
are grounded in prior works of passive sensing [12, 72, 108]. For 
this paper, we only analyzed the data collected on days that the user 
provided self-reports. Every feature was aggregated at a day-level 
(e.g., daily mean) for each day in the sample. 

3.3.2 Social Media Language. For this paper, we specifcally fo-
cused on the data on participant posts on Facebook, given Facebook 
was the most widely used platform in our participant pool [87]. 
Social media data provided psycholinguistic attributes of the partic-
ipant posts using LIWC (Linguistic Inquiry and Word Count) [79] 
This lexicon has been used in prior work to study mental health 
and wellbeing through social media [30]. Based on this [30], we 
also used 50 categories of LIWC that De Choudhury et al. seg-
regated into the 9 diferent groups, afective attributes, cognitive 
attributes, perception, interpersonal focus, temporal references, lexical 
density and awareness, biological concerns, personal concerns, and 
social concerns. Additionally, posts were characterized with senti-
ment analysis (score for positive, negative, and neutral label) [66]. 
Lastly, this data provided a large set of open vocabulary features, 
i.e., the usage of the top 500 n-grams [24] within the corpus of all 
posts in the study. These features were sparse because n-grams 
do not appear consistently on all posts but are still a mainstay in 
language-based predictions of mental wellbeing [3, 91, 109]. Table 2 
summarizes these features. 
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Figure 3: The triangulation framework helps compare diferent prediction models. For H1a and H1b, Mpa and Msm predict 
self-reports of anxiety and stress respectively. For H2, Mpa and Msm predict high arousal duration. 

4 METHOD 
To test our hypotheses, we compared the performance of two ap-
proaches for predicting diferent ground truth for mental states. 
The frst used modalities with psycho-social signals, Msm (social 
media language features), while the second used those with behav-
ioral signals, Mpa (physical activity features). Neither self-report 
assessments nor arousal measurements alone can comprehensively 
capture the nuances of anxiety or stress. Therefore, we compared 
diferent approaches to predict them as a means to disentangle 
the semantic relationship between low-level computer representa-
tions and high-level mental wellbeing constructs. This approach 
was motivated by previous works that used quantitative data tri-
angulation [36]. The general framework of triangulation [31] is 
suitable for deconstructing predictive analysis of wellbeing using 
passive sensing because it “adds rigor, breadth complexity, richness, 
and depth to any inquiry”. Figure 3 illustrates an overview of our 
investigation framework. 

4.1 Feature Engineering 
This paper refers to both anxiety and stress as ‘states’, because 
these change in short periods of time. In the scope of this work, the 
ground truth measures (both self-report and arousal) were collected 
at the day-level granularity [69]. Prior works in pervasive sensing 
for mental wellbeing [38, 96, 107] motivated us to analyze behav-
ior not just during the day of ground-truth measure, but also in 
periods preceding it. Even theoretically, mental states are indicated 
by general trait behavior that changes but is less sensitive [110]. 
Therefore, our approach accounted for the historic sensor data to 
approximate the target concept. To this end, we frst collated fea-
tures that spanned a period prior to the prediction day. 

4.1.1 Feature Windows. The predictive models we built for both 
Mpa and Msm to consider a window of time for the features. For 
instance, to predict the state-anxiety (H1a) for day n the model 

analyzed features in a span of d days before n. Here, d dictates the 
fxed window size. 
Physical Activity. In our dataset, since ofine sensors could con-
tinuously monitor individuals we varied the window size between 
1 − 15 days. This results in f × d dimensions if f is the original set 
of features computed for each day and d is the window size. Im-
portantly, these sensors were not active before the frst self-report 
was collected for any participant [69], therefore this modality was 
limited in how far the window could stretch retrospectively. Since 
the average participants had 31 labels the upper limit of 15 days was 
chosen to balance the remaining days for evaluation. If a window 
of, say, 31 days was chosen then in most cases, only the most recent 
label would have physical activity features for every day while all 
days before that would have empty data. 
Online Language. Unlike physical activity data, which provided 
a near-continuous and contiguous signal, the online language data 
obtained from social media is extremely sporadic. Social media can 
be considered a form of “virtual sensor” that capture rich momen-
tary events, which occur irregularly [106]. This is inherent to the 
approach as people do not post regularly, thus making social media 
platforms approximate event-based sensors. Thus, the window size 
for this modality varied between 30 − 180 days, with a shift of 
30 days between each window. In contrast to ofine sensors that 
were only instrumented after enrollment, social media allowed us 
to access data prior to enrollment and could, therefore, support a 
much broader window [87]. 

4.1.2 Prepossessing. This section elaborates on our methodology 
for imputing missing values and standardizing features in windows. 
Physical Activity. On certain days particular features could be 
missing due to participant compliance (e.g., the participant did not 
charge a device or data failed to log). Consequently, we imputed 
the missing values of a feature by substituting it with the mean of 
that feature for an individual for a given window. To demonstrate, 
if a feature value was missing for an original feature f a on dayÍd adj , then the average will be =1 fi /d , where d is all days the i 
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Figure 4: Comparing models with different window length
to predict anxiety

Table 3: Summary of between models comparison for self-
reported anxiety
(‘-’:𝑝 < 1, ‘.’:𝑝 < 0.1, ‘*’:𝑝 < 0.05, ‘**’:𝑝 < 0.01, ‘***’:𝑝 < 0.001)

Pearson’s R SMAPE
Regressor 𝑀𝑝𝑎 𝑀𝑠𝑚 𝑀𝑝𝑎 𝑀𝑠𝑚

Random Forest 0.34*** 0.56*** 0.18 0.16
Gradient Boost 0.27*** 0.51*** 0.19 0.17
XGBoost 0.27*** 0.51*** 0.19 0.17

Window Size (days) 13 30 13 30

washing out any true variations. Therefore, we heuristically re-
jected windows that have fewer than 1 post per week on account of
low density. This was followed up by the approach described ear-
lier where both imputation and standardization are applied within
windows.

4.2 Feature Processing and Model Training
We developed different non-linear regression models for 𝑀𝑝𝑎 and
𝑀𝑠𝑚 to estimate self-reported state anxiety (H1a), perceived stress
(H1b), and objectively measured high-arousal duration (H2). In par-
ticular, we trained models with both modalities using estimators
that rely on ensemble learning because these approaches “reduce
the variance — thereby improving the accuracy” of estimates [114,
p. 1]. The Random Forest regressor aggregates independent de-
cision trees, each of which learns on a random sample of input
features [63]. Gradient Boost learns incrementally over time by in-
creasing the importance of poorly estimated observations in every
subsequent iteration [34]. An additional variation to this is Extreme
Gradient Boosting (XGBoost), which is both robust to noise and
designed to deal with sparse input features [21], such as those ex-
tracted from social media data. Moreover, a different model was
built for every window size and each model was trained using a 5-
fold cross-validationmethod. Additionally, the grid search approach
tuned the parameters for each model [97]. Since the information
used to predict the target value for each day was spread across a
window of 𝑑 days, it leads to 𝑓 ×𝑑 dimensions, which can sabotage
the training because of the curse of dimensionality. To tackle this
we employed certain feature transformation and reduction tech-
niques to improve the model training. These processing approaches
are applied to each model separately, i.e., it is unique to the window
size. Given our cross-validation approach, these feature processing
steps were “fit” only to the training data without incorporating any
of the observations in the testing folds.

4.2.1 Coefficient of Variance. First, we estimated the variance ex-
plained by each dimension measuring the coefficient of variance
(CV) [88]. With a conservative bound, we remove dimensions that
are beyond 1 standard deviation of the average CV. For the lin-
guistic features included in the𝑀𝑠𝑚 models, this typically led to a
dimension reduction by 20 − 26% with windows varying between
30 − 180 days. For the physical activity features in𝑀𝑝𝑎 , this led to
a reduction of 32 − 14% for windows of size 1 − 14 days. Note: The

𝑀𝑝𝑎 model used in H2 does not use this aspect of the pipeline because
it produces a better model without this selection.

4.2.2 Principal Component Analysis. Next, we further reduced the
dimensions by performing PCA on the remaining dimensions [112].
This approach identifies latent components in the data (linear com-
binations of existing dimensions) that explain maximum variance.
The first set of principal components that can cumulatively explain
more than 90% of the variance in the data were selected as dimen-
sions going forward. For𝑀𝑝𝑎 , between window sizes of 1− 14 days,
this process reduced dimensions by 62− 84% respectively. Similarly,
for 𝑀𝑠𝑚 , between window sizes of 30 − 180 days we observed a
reduction of 51 − 86%.
4.2.3 Mutual Information. Lastly, for 𝑀𝑠𝑚 we included a final
shortlist of dimensions based on mutual information between the
input dimensions and the target variable [102]. Based on the mu-
tual information scores, this process selected the top 10 percentile
dimensions. It is important to note that this procedure is both
unnecessary and detrimental to apply on the features of 𝑀𝑝𝑎 as
these models had lower dimensionality to begin with and reduction
beyond the PCA described earlier generated weaker models.

5 RESULTS
This paper studies the semantic gap by comparing different predic-
tion approaches with an analytic process grounded in the data tri-
angulation framework [35]. This framework enabled us to method-
ologically evaluate heterogeneous approaches to understand the
same phenomenon [30]. The approaches we compared in this study
differ in terms of both data source and methodology. Therefore, for
each modality this paper addresses the research questions on the
basis of the best models for𝑀𝑝𝑎 and𝑀𝑠𝑚 .
Within Modality Comparisons. The best model was chosen on
the basis of the highest pooled Pearson’s correlation between the
true values and the predicted values. Specifically, we pooled to-
gether the predictions from each cross-validation fold and then
computed the correlation with the ground truth. This approach is
robust to heterogeneity in target variables’ distribution between
folds and provides a more generic measure of performance [2].
We used the Pearson’s correlation coefficient because it spans all
samples to describe a complete relationship, is not sensitive to the
distribution of samples and does not assume normality [76]. This

Figure 4: Comparing models with diferent window length 
to predict anxiety 
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Figure 5: Comparing models with different window length
to predict stress

Table 4: Summary of between models comparison for self-
reported stress
(‘-’:𝑝 < 1, ‘.’:𝑝 < 0.1, ‘*’:𝑝 < 0.05, ‘**’:𝑝 < 0.01, ‘***’:𝑝 < 0.001)

Pearson’s R SMAPE
Regressor 𝑀𝑝𝑎 𝑀𝑠𝑚 𝑀𝑝𝑎 𝑀𝑠𝑚

Random Forest 0.37*** 0.51*** 0.18 0.17
Gradient Boost 0.31*** 0.44*** 0.18 0.18
XGBoost 0.32*** 0.45*** 0.18 0.18

Window (days) 14 30 14 30

correlation contrasts a model’s input features and the target vari-
able. For internal validity of the regression models, we compared
the Symmetric Mean Absolute Percentage Error (SMAPE) against an
arbitrary regression model that always predicted the mean of the
training data.
Between Modality Comparisons. Once the best models of𝑀𝑝𝑎

and𝑀𝑠𝑚 were identified we validated comparisons between𝑀𝑝𝑎

and 𝑀𝑠𝑚 by performing a permutation test [5, 102]. Essentially,
we attempted to reject the null hypothesis that a random set of
features in a similar feature space (range and dimensionality) will
still perform better than the worse model [88]. As a result, we
permuted random features in the same space and compute the
probability (𝑝−value) of such an arbitrary model improving over
the benchmark.

5.1 RQ1: Semantic Gap in Predicting
Psychological Aspects of Wellbeing

5.1.1 H1a: 𝑀𝑠𝑚 is a better predictor of self-reported anxiety. We
find language on social media to be more indicative of self-reported
state anxiety when compared with physical activity from offline
sensors. With physical activity features, we find the best model
for𝑀𝑝𝑎 to be with a window length of 𝑑 = 14 and using the Ran-
dom Forest regressor (Figure 4a). This model recorded a Pearson’s
r= 0.34. In comparison to an arbitrary regressor, which demon-
strated a SMAPE= 0.20, this model shows a SMAPE= 0.18, a 10%
improvement over the baseline. By contrast, for the same target
variable, the best𝑀𝑠𝑚 model was at 𝑑 = 30 with a Random Forest
regressor (Figure 4b), which yields a Pearson’s r= 0.56. In com-
parison to the baseline (SMAPE= 0.21), this model improves by
30% (SMAPE= 0.14). Between models, we see the Pearson’s r in
the anxiety values predicted by𝑀𝑠𝑚 to be 64% better than values
predicted by𝑀𝑝𝑎 . To test the robustness of this comparison we ran
the pipeline for𝑀𝑠𝑚 1000 times with randomly generated permuta-
tions of the feature values and find the probability of improvement
over𝑀𝑝𝑎 to be less than 0.001. As a result, this asserts𝑀𝑠𝑚 is more
predictive of self-reported state anxiety than𝑀𝑝𝑎 , and this supports
hypothesis H1a (Table 3).

5.1.2 H1b:𝑀𝑠𝑚 is a better predictor of self-reported stress. Similar
to the previous result, language on social media is more predictive of
self-reported stress than physical activity from offline sensors. In the

case of𝑀𝑝𝑎 , the window length of 𝑑 = 14 with the Random Forest
regressor (Figure 5a) emerged at the best model with a Pearson’s
r= 0.36. This improved on the baseline (SMAPE= 0.20) by 10%
(SMAPE= 0.18). On the other hand, the best 𝑀𝑠𝑚 model was at
a 𝑑 = 30, also with Random Forest shows a Pearson’s r= 0.51
(Figure 5b). Compared to the baseline (SMAPE= 0.20), this model
had a SMAPE= 0.17, i.e., a 15% improvement. When comparing the
two models, we find the Pearson’s r of𝑀𝑠𝑚 to be 37% better than
that of 𝑀𝑝𝑎 . The permutation test was run 1000 times for random
versions of𝑀𝑠𝑚 and improved over𝑀𝑝𝑎 less than 0.001 of the time.
Based on the results, 𝑀𝑠𝑚 was a better predictor of self-reported
stress than𝑀𝑝𝑎 , and therefore the hypothesis H1b holds (Table 4).

5.1.3 Post-Hoc Analysis. The results of the experiments argue that
features extracted from social media posts can encapsulate analo-
gous phenomena and therefore predict the target variable better.
However, social signals can be derived from data acquired through
offline signals as well. Since offline interactions are subject to similar
presentation effects [45], we performed an additional experiment
that augments 𝑀𝑝𝑎 with some physically sensed social features.
In particular, we used the Bluetooth beacons to identify social be-
haviors, such as the time of first interaction, number of unique
interactions and their duration (Table 5). We included these fea-
tures to the models used to test𝑀𝑝𝑎 to predict the ground truth. The
paper refers to this combined modality as,𝑀∗

𝑝𝑎 . In fact, the pipeline
used for𝑀𝑝𝑎 is the best framework for𝑀∗

𝑝𝑎 as well. For anxiety, the
optimal results were produced with a random forest regressor at a
window length of 𝑑 = 13 where the Pearson’s r is 0.49. Albeit still
less than 𝑀𝑠𝑚 (Pearson’s r is 0.56), this was markedly more than
the best model for 𝑀𝑝𝑎 (Pearson’s r is 0.34) by 64%. Actually, for
predicting stress, the best results emerged with the same regressor
and same window length (Pearson’s r = 0.51). Not only was it better
than𝑀𝑝𝑎(Pearson’s r = 0.37) by 41%, it was comparable to 𝑀𝑠𝑚 as
well (Pearson’s r = 0.51).

5.1.4 Interpretation. The results for predicting self-reported anxi-
ety and self-reported stress support our hypotheses towards our
first research question, which investigates if features encapsulat-
ing social signals reduce the gap with self-reported measures of
wellbeing (Figure 6a and Figure 6b). To reemphasize the intuition
behind these hypotheses we reiterate the motivation discussed in
Section 2.3. Mental wellbeing constructs like anxiety and stress

Figure 5: Comparing models with diferent window length 
to predict stress 

feature was not null. After this the features were standardized by 
subtracting the mean of the feature values and dividing it by the 
standard deviation. Similar to the imputation, the standardization 
procedure was also applied within windows, i.e., the average and 
standard deviation for any feature fi

a , was calculated on [f1 
a , fd

a ] 
where d is the window size. 
Online Language. Empty values occur more frequently because 
most participants did not post everyday. Because of this limitation, 
flling in missing values with averages could lead to washing out 
any true variations. Therefore, we heuristically rejected windows 
that have fewer than 1 post per week on account of low density. 
This was followed up by the approach described earlier where both 
imputation and standardization are applied within windows. 

4.2 Feature Processing and Model Training
We developed diferent non-linear regression models for Mpa and 
Msm to estimate self-reported state anxiety (H1a), perceived stress 
(H1b), and objectively measured high-arousal duration (H2). In par-
ticular, we trained models with both modalities using estimators 
that rely on ensemble learning because these approaches “reduce 
the variance — thereby improving the accuracy” of estimates [117, 
p. 1]. The Random Forest regressor aggregates independent de-
cision trees, each of which learns on a random sample of input 
features [64]. Gradient Boost learns incrementally over time by in-
creasing the importance of poorly estimated observations in every 
subsequent iteration [35]. An additional variation to this is Extreme 
Gradient Boosting (XGBoost), which is both robust to noise and 
designed to deal with sparse input features [21], such as those ex-
tracted from social media data. Moreover, a diferent model was 

Table 3: Summary of between models comparison for self-
reported anxiety 
(‘-’:p < 1, ‘.’:p < 0.1, ‘*’:p < 0.05, ‘**’:p < 0.01, ‘***’:p < 0.001) 

Regressor 
Pearson’s R 
Mpa Msm 

SMAPE 
Mpa Msm 

Random Forest 
Gradient Boost 
XGBoost 

0.34*** 
0.27*** 
0.27*** 

0.56*** 
0.51*** 
0.51*** 

0.18 
0.19 
0.19 

0.16 
0.17 
0.17 

Window Size (days) 13 30 13 30 

built for every window size and each model was trained using a 5-
fold cross-validation method. Additionally, the grid search approach 
tuned the parameters for each model [100]. Since the information 
used to predict the target value for each day was spread across a 
window of d days, it leads to f × d dimensions, which can sabotage 
the training because of the curse of dimensionality. To tackle this 
we employed certain feature transformation and reduction tech-
niques to improve the model training. These processing approaches 
are applied to each model separately, i.e., it is unique to the window 
size. Given our cross-validation approach, these feature processing 
steps were “ft” only to the training data without incorporating any 
of the observations in the testing folds. 

4.2.1 Coeficient of Variance. First, we estimated the variance ex-
plained by each dimension measuring the coefcient of variance 
(CV) [91]. With a conservative bound, we remove dimensions that 
are beyond 1 standard deviation of the average CV. For the lin-
guistic features included in the Msm models, this typically led to a 
dimension reduction by 20 − 26% with windows varying between 
30 − 180 days. For the physical activity features in Mpa , this led to 
a reduction of 32 − 14% for windows of size 1 − 14 days. Note: The 
Mpa model used in H2 does not use this aspect of the pipeline because 
it produces a better model without this selection. 

4.2.2 Principal Component Analysis. Next, we further reduced the 
dimensions by performing PCA on the remaining dimensions [115]. 
This approach identifes latent components in the data (linear com-
binations of existing dimensions) that explain maximum variance. 
The frst set of principal components that can cumulatively explain 
more than 90% of the variance in the data were selected as dimen-
sions going forward. For Mpa , between window sizes of 1 − 14 days, 
this process reduced dimensions by 62 − 84% respectively. Similarly, 
for Msm , between window sizes of 30 − 180 days we observed a 
reduction of 51 − 86%. 
4.2.3 Mutual Information. Lastly, for Msm we included a fnal 
shortlist of dimensions based on mutual information between the 
input dimensions and the target variable [105]. Based on the mu-
tual information scores, this process selected the top 10 percentile 
dimensions. It is important to note that this procedure is both 
unnecessary and detrimental to apply on the features of Mpa as 
these models had lower dimensionality to begin with and reduction 
beyond the PCA described earlier generated weaker models. 
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5 RESULTS 
This paper studies the semantic gap by comparing diferent predic-
tion approaches with an analytic process grounded in the data tri-
angulation framework [36]. This framework enabled us to method-
ologically evaluate heterogeneous approaches to understand the 
same phenomenon [31]. The approaches we compared in this study 
difer in terms of both data source and methodology. Therefore, for 
each , this paper addresses the research questions on the basis of 
the best models for Mpa and Msm . 
Within Modality Comparisons. The best model was chosen 
based on the highest pooled Pearson’s correlation between the true 
values and the predicted values. Specifcally, we pooled together 
the predictions from each cross-validation fold and then computed 
the correlation with the ground truth. This approach is robust to 
heterogeneity in target variables’ distribution between folds and 
provides a more generic measure of performance [2]. We used the 
Pearson’s correlation coefcient because it spans all samples to de-
scribe a complete relationship, is not sensitive to the distribution of 
samples, and does not assume normality [77]. This correlation con-
trasts a model’s input features and the target variable. For internal 
validity of the regression models, we compared the Symmetric Mean 
Absolute Percentage Error (SMAPE) against an arbitrary regression 
model that always predicted the mean of the training data. 
Between Modality Comparisons. Once the best models of Mpa 
and Msm were identifed we validated comparisons between Mpa 
and Msm by performing a permutation test [5, 105]. Essentially, 
we attempted to reject the null hypothesis that a random set of 
features in a similar feature space (range and dimensionality) will 
still perform better than the worse model [91]. We permuted these 
random features and computed the probability (p−value) of such 
an arbitrary model improving over the benchmark. 

5.1 RQ1: Semantic Gap in Predicting 
Psychological Aspects of Wellbeing 

5.1.1 H1a: Msm is a beter predictor of self-reported anxiety. We 
fnd language on social media to be more indicative of self-reported 
state anxiety when compared with physical activity from ofine 
sensors. With physical activity features, we fnd the best model 
for Mpa to be with a window length of d = 14 and using the Ran-
dom Forest regressor (Figure 4a). This model recorded a Pearson’s 
r= 0.34. In comparison to an arbitrary regressor, which demon-
strated a SMAPE= 0.20, this model shows a SMAPE= 0.18, a 10% 
improvement over the baseline. By contrast, for the same target 
variable, the best Msm model was at d = 30 with a Random Forest 
regressor (Figure 4b), which yields a Pearson’s r= 0.56. In com-
parison to the baseline (SMAPE= 0.21), this model improves by 
30% (SMAPE= 0.14). Between models, we see the Pearson’s r in 
the anxiety values predicted by Msm to be 64% better than values 
predicted by Mpa . To test the robustness of this comparison we ran 
the pipeline for Msm 1000 times with randomly generated permuta-
tions of the feature values and fnd the probability of improvement 
over Mpa to be less than 0.001. As a result, this asserts Msm is 
more predictive of self-reported state anxiety than Mpa , and this 
supports hypothesis H1a (Table 3). 

Table 4: Summary of between models comparison for self-
reported stress 
(‘-’:p < 1, ‘.’:p < 0.1, ‘*’:p < 0.05, ‘**’:p < 0.01, ‘***’:p < 0.001) 

Pearson’s R SMAPE 
Regressor Mpa Msm Mpa Msm 

Random Forest 0.37*** 0.51*** 0.18 0.17 
Gradient Boost 0.31*** 0.44*** 0.18 0.18 
XGBoost 0.32*** 0.45*** 0.18 0.18 

Window (days) 14 30 14 30 

5.1.2 H1b: Msm is a beter predictor of self-reported stress. Similar 
to the previous result, language on social media is more predictive of 
self-reported stress than physical activity from ofine sensors. In the 
case of Mpa , the window length of d = 14 with the Random Forest 
regressor (Figure 5a) emerged at the best model with a Pearson’s 
r= 0.36. This improved on the baseline (SMAPE= 0.20) by 10% 
(SMAPE= 0.18). On the other hand, the best Msm model was at 
a d = 30, also with Random Forest shows a Pearson’s r= 0.51 
(Figure 5b). Compared to the baseline (SMAPE= 0.20), this model 
had a SMAPE= 0.17, i.e., a 15% improvement. When comparing the 
two models, we fnd the Pearson’s r of Msm to be 37% better than 
that of Mpa . The permutation test was run 1000 times for random 
versions of Msm and improved over Mpa less than 0.001 of the time. 
Based on the results, Msm was a better predictor of self-reported 
stress than Mpa , and therefore the hypothesis H1b holds (Table 4). 

5.1.3 Post-Hoc Analysis. The results of the experiments argue that 
features extracted from social media posts can encapsulate analo-
gous phenomena and therefore predict the target variable better. 
However, social signals can be derived from data acquired through 
ofine signals as well. Since ofine interactions are subject to similar 
presentation efects [46], we performed an additional experiment 
that augments Mpa with some physically sensed social features. 
In particular, we used the Bluetooth beacons to identify social be-
haviors, such as the time of frst interaction, number of unique 
interactions, and their duration (Table 5). We included these fea-
tures in the models used to test Mpa to predict the ground truth. 
The paper refers to this combined modality as, M ∗ pa . In fact, the 
pipeline used for Mpa is the best framework for M ∗ as well. For pa
anxiety, the optimal results were produced with a random forest 
regressor at a window length of d = 13 where the Pearson’s r 
is 0.49. Albeit still less than Msm (Pearson’s r is 0.56), this was 
markedly more than the best model for Mpa (Pearson’s r is 0.34) by 
64%. Actually, for predicting stress, the best results emerged with 
the same regressor and same window length (Pearson’s r = 0.51). 
Not only was it better than Mpa (Pearson’s r = 0.37) by 41%, it was 
comparable to Msm as well (Pearson’s r = 0.51). 

5.1.4 Interpretation. The results for predicting self-reported anxi-
ety and self-reported stress support our hypotheses towards our 
frst research question, which investigates if features encapsulat-
ing social signals reduce the gap with self-reported measures of 
wellbeing (Figure 6a and Figure 6b). To reemphasize the intuition 
behind these hypotheses we reiterate the motivation discussed in 
Section 2.3. Mental wellbeing constructs like anxiety and stress 
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Table 5: Social features extracted from ofline sensors 

Category Features Stream 

Colocation Time of frst and last interaction, num-
ber of interactions, number of unique 
participants, duration of interactions, 
percentage alone, percentage with at 
least one /two /three others 

BT Bea-
cons 
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Table 5: Social features extracted from offline sensors

Category Features Stream

Colocation Time of first and last interaction, num-
ber of interactions, number of unique
participants, duration of interactions,
percentage alone, percentage with at
least one /two /three others

BT Bea-
con
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(b) Stress

Figure 6: Comparison between best models of
different modalities (RQ1)

have different aspects. Self-reports are skewed to capture the psy-
chological aspects [50] that might not be concordant with how
the individual actually behaves. Moreover, self-reports are influ-
enced by many social effects of self-presentation such as impression
management [52, 57] and response bias [47]. These effects are in-
conspicuous to sensors that capture physical activity, even though
that data can be modeled to predict such self-report (evident from
the improvement on the baseline). By contrast, data sourced from
social media are weaved with similar ecological effects that could in-
fluence an individual’s self-report. For example, self-disclosure [36]
and self-censorship [25] are both factors that affect the language
posted online. This could explain why𝑀𝑠𝑚 exhibited better results

than 𝑀𝑝𝑎 when trying to predict self-reports. Relatedly, incorpo-
rating more explicitly social features in offline sensing also shows
an improvement in the prediction (𝑀∗

𝑝𝑎).

5.2 RQ2: Semantic Gap in Predicting
Physiological Aspects of Wellbeing

5.2.1 H2: 𝑀𝑝𝑎 is a better predictor of objectively-measured high-
arousal duration. While predicting high-arousal duration the model
built with physical activity features was better than the correse-
ponding model built with social media language features. We find
the best model for𝑀𝑝𝑎 to be at window length of 𝑑 = 15 with the
XGBoost regressor (Figure 7a), which showed a Pearson’s r= 0.63.
This surpassed the baseline (SMAPE= 0.54) by 16% (SMAPE= 0.45).
In comparison, the best performing𝑀𝑠𝑚 model occured at 𝑑 = 150,
also with Random Forest, which yielded a Pearson’s r= 0.56 (Fig-
ure 7b). This model had a SMAPE= 0.43, i.e., a 20% improvement on
the baseline (SMAPE= 0.54). In comparison to𝑀𝑠𝑚 the Pearson’s r
of 𝑀𝑝𝑎 is 13% better. To reject the possibility of chance improve-
ment, from 1000 randomly generated permutations of 𝑀𝑝𝑎 less
than 0.01 feature sets improved over 𝑀𝑠𝑚 . These results indicate
that𝑀𝑝𝑎 is a better predictor of self-reported stress than𝑀𝑠𝑚 and
therefore supports hypothesis H2 (Table 6).

5.2.2 Post-Hoc. Similar to the analysis performed in Section 5.1.3,
we further experiment on the predicting physiological wellbeing
by including offline sensed social features (Table 5). The argument
to pursue such an analysis in the light of RQ1 was to estimate
the effects of social signals from alternative sources to reduce the
potential semantic gap. However, in RQ2 testing a prediction with
𝑀∗
𝑝𝑎 is to explore how social factors interact with physical signals

to predict physiological aspects of wellbeing. On experimenting
with𝑀∗

𝑝𝑎 we find that a random forest regressor at a window length
of 𝑑 = 13 yielded the best result of Pearson’s r = 0.69. Compared to
the large boost we observed in predicting self-reports, adding social
signals to predict objective measurements only augmented 𝑀𝑝𝑎

(Pearson’s r is 0.63) by only 9%. While this is still noticeable, we
believe the improvement is limited by the nature of the additional
signal (psycho-social) in comparison to the representation that
is being predicted (physiological). Therefore, although additional
features can lead to some increment in performance, large boosts
can be achieved when a model is augmented by semantically similar
features (Section 5.1.3).

5.2.3 Interpretation. The findings for predicting high arousal dura-
tion support our hypotheses towards the second research question,
which speculates a reduction of the semantic gap in predicting ob-
jective measures of wellbeing by modeling features with behavioral
signals (Figure 8). This question was proposed to provide divergent
validity to the first question and reinforce the quantitative data
triangulation method of validation [35]. As discussed in Section 2.4,
the physiological aspects of wellbeing can often be independent of
what individuals report [50]. It can be subject to inherent beliefs,
other subjective factors and confounding mental phenomena [98].
On the other hand, the physiological experience of the individ-
ual remains consistent. Furthermore, the physical behaviors of an
individual are coupled with physiological responses to wellbeing
constructs like stress. For example, increased activity can reduce

Figure 6: Comparison between best models of diferent 
modalities (RQ1) 

have diferent aspects. Self-reports are skewed to capture the psy-
chological aspects [51] that might not be concordant with how 
the individual actually behaves. Moreover, self-reports are infu-
enced by many social efects of self-presentation such as impression 
management [53, 58] and response bias [48]. These efects are in-
conspicuous to sensors that capture physical activity, even though 
that data can be modeled to predict such self-report (evident from 
the improvement on the baseline). By contrast, data sourced from 
social media are weaved with similar ecological efects that could in-
fuence an individual’s self-report. For example, self-disclosure [37] 
and self-censorship [25] are both factors that afect the language 
posted online. This could explain why Msm exhibited better results 
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(b)𝑀𝑠𝑚

Figure 7: Comparing models with different window length
to predict high-arousal duration

Table 6: Summary of model comparison between models to
predict high-arousal duration
(‘-’:𝑝 < 1, ‘.’:𝑝 < 0.1, ‘*’:𝑝 < 0.05, ‘**’:𝑝 < 0.01, ‘***’:𝑝 < 0.001)

Pearson’s R SMAPE
Regressor 𝑀𝑝𝑎 𝑀𝑠𝑚 𝑀𝑝𝑎 𝑀𝑠𝑚

Random Forest 0.63*** 0.56*** 0.45 0.46
Gradient Boost 0.60*** 0.54*** 0.46 0.46
XGBoost 0.61*** 0.55*** 0.43 0.46

Window (days) 11 150 11 150
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Figure 8: Comparison between best models of different
modalities (RQ2)

arousal by expending energy [81], while reduced sleep can be the
result of increased arousal [84]. This kind of information is challeng-
ing for passive sensing through online traces to perceive as people
only present a part of their selves on such platforms. Accordingly,
𝑀𝑝𝑎 performed better in this regard due because offline modalities
that continuously capture an individual’s functioning can illustrate
richer representations of their behavior.

5.3 Participant-Independent Models
The models described in Section 5.1 and 5.2 were validated by us-
ing some observations in the training folds while others are used
in testing folds (each participant had an average of 33 days of
data). Such approaches, known as “mixed-model” or “personalized-
model”, account for individualized routine and trait-like propensi-
ties to predict the target variable and has been used in prior works
in longitudinal sensing with smartphone data [31, 104] and social
media data [22]. An alternative approach to modeling sensor data
is with participant-independent models which treat testing data
as entirely unseen participants. These are expected to generalize
better to new participant data. To inquire our hypotheses with this
approach we first performed a participant-independent 5-fold cross
validation. We followed the same feature processing described in
Section 4.2, with the only difference being that 𝑀𝑠𝑚 performed
better without any additional mutual information based feature

selection (Section 4.2.3). For H1, we found that the best model for
𝑀𝑠𝑚 significantly estimated both self-reported anxiety (Pearson’s r
= 0.15 with XGBoost when 𝑑 = 180) and stress (Pearson’s r= 0.08
with Random Forest when 𝑑 = 90). In contrast, however,𝑀𝑝𝑎 mod-
els did not significantly estimate the ground truth at all (Pearson’s
r= 0.02 for anxiety and Pearson’s r= 0.02 for stress). For H2, the
best model for𝑀𝑝𝑎 significantly estimated high arousal duration
(Pearson’s r= 0.52 with XGBoost when 𝑑 = 1), whereas the best per-
formance for𝑀𝑠𝑚 did not show significant correlation (Pearson’s
r= 0.03). Further, we also performed a leave-one-participant-out
validation for both hypotheses. Again for H1, we found that only
𝑀𝑠𝑚 could significantly estimate self-reported anxiety (Pearson’s
r= 0.08 with XGBoost when 𝑑 = 30) and stress (Pearson’s r= 0.07
with XGBoost when 𝑑 = 30). Similarly, for H2, only 𝑀𝑝𝑎 signif-
icantly estimated high arousal duration (Pearson’s r= 0.52 with
Gradient Boost when 𝑑 = 1). Even though the performance of
person-independent models was lower than the personalized ones
(as shown in similar studies [31, 104]), we still found that these mod-
els demonstrated a persistent semantic gap. Table 7 summarizes the
comparison between𝑀𝑝𝑎 and𝑀𝑠𝑚 for the different hypotheses.

6 DISCUSSION
The findings of the paper reveal the presence of this semantic gap
in studies to infer mental wellbeing. This is not meant to discourage
research in this space, but to highlight the untapped potential of
these studies. For instance, our post-hoc analyses in Section 5.1.3
and 5.2.2 illustrated that models improve by incorporating features
reflecting social signals. To this end, we propose a set of guidelines
for researchers in social computing andCSCW ,who plan to conduct
passive sensing studies to infer mental wellbeing.

6.1 Ground Truth Matters
In studies of mental wellbeing, even with validated
instruments to assess groundtruth, researchers need
to consider how this ground-truth represents or ab-
stracts the underlying mental wellbeing construct
(psychological or physiological). Consequently, re-
searchers must account for the different factors that
affect these representations (e.g., social biases or be-
havioral artifacts) to get optimal results.

Figure 7: Comparing models with diferent window length 
to predict high-arousal duration 

Table 6: Summary of model comparison between models to 
predict high-arousal duration 
(‘-’:p < 1, ‘.’:p < 0.1, ‘*’:p < 0.05, ‘**’:p < 0.01, ‘***’:p < 0.001) 

Pearson’s R SMAPE 
Regressor Mpa Msm Mpa Msm 

Random Forest 0.63*** 0.56*** 0.45 0.46 
Gradient Boost 0.60*** 0.54*** 0.46 0.46 
XGBoost 0.61*** 0.55*** 0.43 0.46 

Window (days) 11 150 11 150 

than Mpa when trying to predict self-reports. Relatedly, incorpo-
rating more explicitly social features in ofine sensing also shows 
an improvement in the prediction (M ∗ ).pa 

5.2 RQ2: Semantic Gap in Predicting 
Physiological Aspects of Wellbeing 

5.2.1 H2: Mpa is a beter predictor of objectively-measured high-
arousal duration. While predicting high-arousal duration the model 
built with physical activity features was better than the correspond-
ing model built with social media language features. We fnd the 
best model for Mpa to be at window length of d = 15 with the 
XGBoost regressor (Figure 7a), which showed a Pearson’s r= 0.63. 
This surpassed the baseline (SMAPE= 0.54) by 16% (SMAPE= 0.45). 
In comparison, the best performing Msm model occured at d = 150, 
also with Random Forest, which yielded a Pearson’s r= 0.56 (Fig-
ure 7b). This model had a SMAPE= 0.43, i.e., a 20% improvement on 
the baseline (SMAPE= 0.54). In comparison to Msm the Pearson’s r 
of Mpa is 13% better. To reject the possibility of chance improve-
ment, from 1000 randomly generated permutations of Mpa less 
than 0.01 feature sets improved over Msm . These results indicate 
that Mpa is a better predictor of self-reported stress than Msm and 
therefore supports hypothesis H2 (Table 6). 

5.2.2 Post-Hoc. Similar to the analysis performed in Section 5.1.3, 
we further experiment on predicting physiological wellbeing by 
including ofine sensed social features (Table 5). The argument 
to pursue such an analysis in the light of RQ1 was to estimate 
the efects of social signals from alternative sources to reduce the 
potential semantic gap. However, in RQ2 testing a prediction with 
M ∗ is to explore how social factors interact with physical signals pa
to predict physiological aspects of wellbeing. On experimenting 
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Figure 8: Comparison between best models of diferent 
modalities (RQ2) 

with M ∗ we fnd that a random forest regressor at a window length 
of d = 13

pa 
yielded the best result of Pearson’s r = 0.69. Compared to 

the large boost we observed in predicting self-reports, adding social 
signals to predict objective measurements only augmented Mpa 
(Pearson’s r is 0.63) by only 9%. While this is still noticeable, we 
believe the improvement is limited by the nature of the additional 
signal (psycho-social) in comparison to the representation that 
is being predicted (physiological). Therefore, although additional 
features can lead to some increment in performance, large boosts 
can be achieved when a model is augmented by semantically similar 
features (Section 5.1.3). 

5.2.3 Interpretation. The fndings for predicting high arousal dura-
tion support our hypotheses towards the second research question, 
which speculates a reduction of the semantic gap in predicting ob-
jective measures of wellbeing by modeling features with behavioral 
signals (Figure 8). This question was proposed to provide divergent 
validity to the frst question and reinforce the quantitative data 
triangulation method of validation [36]. As discussed in Section 2.4, 
the physiological aspects of wellbeing can often be independent of 
what individuals report [51]. It can be subject to inherent beliefs, 
other subjective factors, and confounding mental phenomena [101]. 
On the other hand, the physiological experience of the individ-
ual remains consistent. Furthermore, the physical behaviors of an 
individual are coupled with physiological responses to wellbeing 
constructs like stress. For example, increased activity can reduce 
arousal by expending energy [83], while reduced sleep can be the 
result of increased arousal [86]. This kind of information is challeng-
ing for passive sensing through online traces to perceive as people 
only present a part of their selves on such platforms. Accordingly, 
Mpa performed better in this regard due because ofine modalities 
that continuously capture an individual’s functioning can illustrate 
richer representations of their behavior. 

5.3 Participant-Independent Models 
The models described in Section 5.1 and 5.2 were validated by using 
some observations in the training folds while others are used in test-
ing folds (each participant had an average of 33 days of data). Such 

approaches, known as “mixed-model” or “personalized-model”, ac-
count for individualized routine and trait-like propensities to pre-
dict the target variable. These have been used in prior works in 
longitudinal sensing with smartphone data [32, 107] and social 
media data [22]. An alternative approach to modeling sensor data 
is with participant-independent models which treat testing data 
as entirely unseen participants. These are expected to generalize 
better to new participant data. To inquire our hypotheses with this 
approach we frst performed a participant-independent 5-fold cross-
validation. We followed the same feature processing described in 
Section 4.2, with the only diference being that Msm performed 
better without any additional mutual information based feature 
selection (Section 4.2.3). For H1, we found that the best model for 
Msm signifcantly estimated both self-reported anxiety (Pearson’s r 
= 0.15 with XGBoost when d = 180) and stress (Pearson’s r= 0.08 
with Random Forest when d = 90). In contrast, however, Mpa mod-
els did not signifcantly estimate the ground truth at all (Pearson’s 
r= 0.02 for anxiety and Pearson’s r= 0.02 for stress). For H2, the 
best model for Mpa signifcantly estimated high arousal duration 
(Pearson’s r= 0.52 with XGBoost when d = 1), whereas the best per-
formance for Msm did not show signifcant correlation (Pearson’s 
r= 0.03). Further, we also performed a leave-one-participant-out 
validation for both hypotheses. Again for H1, we found that only 
Msm could signifcantly estimate self-reported anxiety (Pearson’s 
r= 0.08 with XGBoost when d = 30) and stress (Pearson’s r= 0.07 
with XGBoost when d = 30). Similarly, for H2, only Mpa signif-
icantly estimated high arousal duration (Pearson’s r= 0.52 with 
Gradient Boost when d = 1). Even though the performance of 
person-independent models was lower than the personalized ones 
(as shown in similar studies [32, 107]), we still found that these mod-
els demonstrated a persistent semantic gap. Table 7 summarizes the 
comparison between Mpa and Msm for the diferent hypotheses. 

6 DISCUSSION 
The fndings of the paper reveal the presence of the semantic gap in 
studies to infer mental wellbeing. This is not meant to discourage 
research in this space, but to highlight the untapped potential of 
these studies. For instance, our post-hoc analyses in Section 5.1.3 
and 5.2.2 illustrated that models improve by incorporating features 
refecting social signals. To this end, we propose a set of guidelines 
for researchers in social and ubiquitous computing, who plan to 
conduct passive sensing studies to infer mental wellbeing. 

6.1 Ground Truth Matters 
In studies of mental wellbeing, even with validated in-
struments to assess ground truth, researchers need to 
consider how this ground truth represents or abstracts 
the underlying mental wellbeing construct (psycho-
logical or physiological). Consequently, researchers 
must account for the diferent factors that afect these 
representations (e.g., social biases or behavioral arti-
facts) to get optimal results. 

Our results show that the presence of a semantic gap refects a 
mismatch between what computational models represent and what 
diferent ground truth represent for the same mental wellbeing state. 
That said, the paper’s fndings are not intended to entirely disregard 
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Table 7: Summary of best models for participant independent models. 
(‘-’:p < 1, ‘.’:p < 0.1, ‘*’:p < 0.05, ‘**’:p < 0.01, ‘***’:p < 0.001) 

Ground Truth Measure Mpa 

5-Fold CV 
Msm M∗ 

pa Mpa 

LOPO CV 
Msm M∗ 

pa 

H1a Self-Reported Anxiety 0.02- 0.15*** 0.02- 0.02- 0.08*** 0.02-
H1b Self-Reported Stress 0.02- 0.08** 0.02- 0.02- 0.07** 0.02-
H2 High Arousal Duration 0.52*** 0.03- 0.55*** 0.52*** 0.03- 0.55*** 

certain sensors, family of features, or instruments for ground truth. 
On the contrary, the primary motivation of this paper is to bring to 
attention the nuances of ground truth measurements and what they 
represent. Specifcally, this paper demonstrates how the ground 
truth labels are merely an abstraction of the actual mental wellbeing 
state and refect limited aspects of it [36, 112]. Since measurements 
of anxiety or stress can be infuenced by unseen factors [20, 54, 58, 
97], features that encapsulate, or are associated with, analogous 
factors are more suitable to explain that form of ground truth. 
For instance, we fnd that modeling social media is better than 
modeling physical activities to predict self-reported measurements 
of both anxiety and stress (Section 5.1). However, this is not the case 
when using the same approaches to predict objective arousal-based 
measurements (Section 5.2). It is not that certain modalities are 
more efective at explaining the mental state itself, but in 
fact, they are more capable at inferring that representation 
of the underlying mental state (Sec 5.1.4 and Sec 5.2.3). 

From the perspective of computer scientists, the ground truth is 
considered an unquestionable “gold standard”. The literature has 
discussed several challenges to passive sensing [49], such as choice 
of device, application, duration, and sampling rate. Our fndings 
extend this list with a focus on ground truth representations. This 
paper demonstrates a case that urges conscious consideration of 
the ground truth’s sensitivity to ecological factors. Many studies in 
the community tend to acquire ground truth in situ [20, 69, 88, 108] 
but it distances the researchers from carefully observing the cir-
cumstances of ground truth measurement. In reference to the un-
certainty of ground truth labels, Plötz’s third postulate for machine-
learning on sensor data states, “there is no ground truth” [80]. We 
situate this in the context of passively inferring mental wellbeing. 
Do participants respond to anxiety questions immediately after 
stressful incidents or do they summarize the experience of their 
day? Do they actually report how they felt or are their responses 
describing the state they wanted to be in? These concerns are not 
only challenging to quantify but also opaque to researchers and 
sensors [20]. However, acknowledging the semantic gap can 
help researchers diagnose model performance by determin-
ing the mismatch between their sensor features and their 
ground truth representation. 

While self-reports remain a mainstay for measuring mental well-
being constructs like anxiety and stress, many studies in mHealth 
have posited alternative measures. Hovsepian et al., proposed a 
new measure of stress in the wild, which involves a wearable de-
vice consisting of multiple biomedical sensors [52]. They found 
this measure to be a strong estimator of self-reported stress in the 
moment. Sometimes, physiological changes might not be captured 
in self-reports[51], but it is still valuable to characterize stressful 

episodes [94]. Prior work has provided evidence for these signals 
to trigger efective wellbeing interventions in feld studies (e.g., 
heart-rate [47] and breathing [44]). Even though mental wellbe-
ing constructs remain fairly subjective with respect to how they 
are experienced, perceived and eventually recorded [45], every 
kind of measurement is sensitive to diferent factors. For exam-
ple, objective markers of physiological changes can vary with 
motion artifacts [52] and self-reports of psychological changes 
often obscure low-level details of the stressful episode [45]. The 
presence of the semantic gap revealed in this work is meant 
to urge researchers to assess the imperceptible aspects of 
their ground truth measure while trying computational ap-
proaches to predict such constructs. 

6.2 Parsimonious Sensing 
For practical feld deployments, the changing socio-
technical landscape afects resource availability and 
privacy perceptions, which can limit researchers from 
conducting brute-force passive sensor studies with 
multiple complementary streams. Therefore, researchers 
should determine the smallest set of streams that are 
semantically the most representative of the ground 
truth measure. Less is more if studies select sensors 
that provide features that reduce the semantic gap in 
predictions. 

As new sensing platforms become commercialized and other 
interfaces like social media become abundant, researchers have a 
plethora of means to digitally infer their mental wellbeing. One 
approach to mitigate the semantic gap is to capture more ecolog-
ical information that can help explain the high-level processes 
that infuence the ground truth. What is evident from this paper 
is that a single sensor stream is typically not robust enough to 
represent the diferent types of variability in ground truth. While 
ofine sensors are skewed to represent behavioral changes (Mpa ), 
online logs of virtual presence are better suited to represent social 
efects (Msm ). Therefore, a natural argument to reduce the gap 
between input features and target construct would be to deploy 
more sensors and track logs from multiple sources. In fact, com-
bining multimodal features together can elicit new context-specifc 
features [89, 116]. However, multimodal studies are challenging to 
deploy in the wild [69, 74, 81, 87], as they are expensive in terms of 
both instrumentation and recruitment. Moreover, additional sensors 
to capture the “reality” of a participant can introduce privacy con-
cerns and generally overwhelm their experience [15, 84]. Instead, 
our fndings suggest an alternative position to pursue parsimonious 
sensor deployments, or to make the most of limited resources to 
appropriately sense mental wellbeing constructs. We are inspired 
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by Plötz’s ffth postulate, “data rule, models serve” [80]. For in-
stance, if deployments intend to measure ground truth through 
self-reports and researchers do not have access explicit sources of 
social signals (such as online activity or conversations), researchers 
should try to accommodate for social efects in ofine sensors 
(as demonstrated by the Bluetooth beacons used in M ∗ in Sec-pa
tion 5.1.3). Alternatively, if the study plans to estimate wellbeing 
with physiological changes then resources should be allocated to 
sense behavioral markers, such as movement and sleep. The exis-
tence of a semantic gap supports the idea of minimal sensing to 
predict wellbeing in comparison to conventional ideas of massive 
sensing. Thus, our paper demonstrates realistic approaches 
to adhere to paradigms like “small data” in (critical) data sci-
ence [15, 60] and passive sensing [40], and the Occam’s razor 
metaphor for parsimony in machine learning [33] 

In the meanwhile, more sophisticated methods to identify mark-
ers for mental wellbeing from passively sensed computational data 
have emerged [70]. Arguably, better feature crafting can help re-
duce this gap even with the same set of sensors. In this regard, 
the semantic gap serves two functions. First, it provides a guiding 
rail to engineer features based on domain-driven aspects of men-
tal wellbeing ground truth. Second, it provides interpretability to 
models by encouraging researchers to inquire if their features cap-
ture psychological or physiological aspects of wellbeing. Moreover, 
the presence of a semantic gap calls into question the objectiv-
ity of machine learning/data mining to generate inferences. Since 
unobtrusive sensing can capture vast amounts of information, en-
gineering this data can often yield spurious connections with the 
target variable [15]. The fndings of this paper encourage more criti-
cal investigations of computational models to arrive at theoretically 
meaningful interpretations. Researchers need to resist the allure of 
viewing more passive data as a Maslow’s golden hammer [68] — a 
tool to solve any problem. Over-engineering the “hammer” can re-
sult in fnding spurious associations in the data [15, 43]. For example, 
does sensing physical behaviors actually predict stress holistically 
or does it merely describe its physiological aspects? Conversely, 
does tracing online content explain what an individual experiences 
or does it only refect how they project themselves? Similar to other 
works that critique, yet advocate, employing machine learning for 
health and wellbeing [13, 36], this paper encourages researchers 
employing passive sensing to build models with deeper con-
sideration of the domain and select sensors accordingly to 
avoid misrepresenting seemingly objective results. 

6.3 Limitations and Future Work 
Although this paper provides evidence of a semantic gap in predict-
ing wellbeing, it is only a case study specifc to a particular dataset. 
Having said that, we believe this phenomenon can be observed in 
other datasets with diverse multimodal sensing streams and difer-
ent sources of ground truth. In practice, such studies are challenging 
to implement and very few datasets with the required richness exist 
at the time of writing. The central concept of the paper is fundamen-
tal to other computing felds [50, 99] and our fndings align with 
those notions of information loss in computational representations 
of human concepts — in this case, constructs of mental wellbeing. 
Relatedly, this paper only investigates two specifc constructs of 
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wellbeing, anxiety, and stress, which are also linked. While both 
of these are associated with many other states and constructs, an 
individual’s wellbeing has many other components that are inde-
pendent of anxiety and stress. Despite this, the implication, that the 
nature of ground truth can inform the choice of passive data col-
lected, applies to other constructs of wellbeing that are vulnerable 
to diferential interpretation because of measurement instruments 
(psychological or physiological). 

To address the research questions, the paper models sensor data 
to explain daily wellbeing states over a period of time. Therefore, 
at its current stage, the fndings are limited to dynamic constructs 
of wellbeing, such as state anxiety and perceived stress (as well as 
arousal). These constructs are expected to vary within short peri-
ods and tightly coupled with ecological changes. However, many 
studies use passive sensing to predict trait-based mental wellbeing 
constructs, such as social anxiety [14]. Since our work is motivated 
by the ground truth acquisition in the moment, the implications 
might be directly transferable to other predictions of wellbeing. 
This creates an opportunity for further investigating the possibility 
of a semantic gap in studies where the target construct is assessed 
in a lab setting or collected once during enrollment. 

Lastly, these results support additional studies regarding the 
validity of in situ methods to collect ground truth. In particular, 
subsequent work can explore the contexts within which the self-
reported ground truth is robust and the semantic gap becomes 
trivial, or tolerable. As a result, researchers can scrutinize the quality 
of their ground truth collection. In turn, the machine learning 
models built with passive data can be trained only on reliable or 
invariant measurements. 

7 CONCLUSION 
Mental wellbeing is a complex phenomenon that diferent measure-
ments of ground truth can interpret it in varying ways. For instance, 
anxiety and stress are constructs that manifest both psychologi-
cally and physiologically. This paper is motivated to investigate 
a semantic gap in commonly used pervasive sensing methods to 
predict such wellbeing constructs. By applying the triangulation 
methodology this paper demonstrates evidence that based on the 
ground truth of mental wellbeing, certain types of passively sensed 
features are more skewed to explaining it. Particularly, features 
with social signals (Msm ), have a smaller semantic gap with self-
reported wellbeing. By contrast, predictive modalities with physical 
signals (Mpa ), have a smaller semantic gap with physiological mea-
sures of wellbeing, such as arousal. This study exposes how the gap 
in sensing streams and the ground truth afects predictions. The 
implications of this semantic gap inform passive sensing studies, 
particularly with respect to the nature of the ground truth and the 
choice of sensing for practical deployments. 
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